Optimal control by least squares support vector machines

نویسندگان

  • Johan A. K. Suykens
  • Joos Vandewalle
  • Bart De Moor
چکیده

Support vector machines have been very successful in pattern recognition and function estimation problems. In this paper we introduce the use of least squares support vector machines (LS-SVM's) for the optimal control of nonlinear systems. Linear and neural full static state feedback controllers are considered. The problem is formulated in such a way that it incorporates the N-stage optimal control problem as well as a least squares support vector machine approach for mapping the state space into the action space. The solution is characterized by a set of nonlinear equations. An alternative formulation as a constrained nonlinear optimization problem in less unknowns is given, together with a method for imposing local stability in the LS-SVM control scheme. The results are discussed for support vector machines with radial basis function kernel. Advantages of LS-SVM control are that no number of hidden units has to be determined for the controller and that no centers have to be specified for the Gaussian kernels when applying Mercer's condition. The curse of dimensionality is avoided in comparison with defining a regular grid for the centers in classical radial basis function networks. This is at the expense of taking the trajectory of state variables as additional unknowns in the optimization problem, while classical neural network approaches typically lead to parametric optimization problems. In the SVM methodology the number of unknowns equals the number of training data, while in the primal space the number of unknowns can be infinite dimensional. The method is illustrated both on stabilization and tracking problems including examples on swinging up an inverted pendulum with local stabilization at the endpoint and a tracking problem for a ball and beam system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Inline Measurement of Particle Concentrations in Multicomponent Suspensions using Ultrasonic Sensor and Least Squares Support Vector Machines

This paper proposes an ultrasonic measurement system based on least squares support vector machines (LS-SVM) for inline measurement of particle concentrations in multicomponent suspensions. Firstly, the ultrasonic signals are analyzed and processed, and the optimal feature subset that contributes to the best model performance is selected based on the importance of features. Secondly, the LS-SVM...

متن کامل

Nonlinear Modelling and Support Vector Machines

Neural networks such as multilayer perceptrons and radial basis function networks have been very successful in a wide range of problems. In this paper we give a short introduction to some new developments related to support vector machines (SVM), a new class of kernelbased techniques introduced within statistical learning theory and structural risk minimization. This new approach leads to solvi...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2001